A (1.999999)-approximation ratio for vertex cover problem (2025)

A (1.999999)-approximation ratio for vertex cover problem (1) Majid Zohrehbandian
Department of Mathematics, Karaj Branch,
Islamic Azad University, Karaj, Iran.
zohrebandian@yahoo.com

Abstract

The vertex cover problem is a famous combinatorial problem, and its complexity has been heavily studied. While a 2-approximation can be trivially obtained for it, researchers have not been able to approximate it better than 2-o(1).In this paper, by introducing a new semidefinite programming formulation that satisfies new properties, we introduce an approximation algorithm for the vertex cover problem with a performance ratio of 1.999999 on arbitrary graphs, en route to answering an open question about the correctness of the unique games conjecture.

Keywords Combinatorial Optimization \cdotVertex Cover Problem \cdotUnique Games Conjecture \cdotComplexity Theory

1 Introduction

In complexity theory, the abbreviation NP refers to "nondeterministic polynomial", where a problem is in NP if we can quickly(in polynomial time) test whether a solution is correct. P and NP-complete problems are subsets of NP problems.We can solve P problems in polynomial time while determining whether or not it is possible to solve NP-complete problems quickly(called the P vs NP problem) is one of the principal unsolved problems in Mathematics and Computer science.

Here, we consider the vertex cover problem (VCP) which is a famous NP-complete problem. It cannot be approximated within a factor of 1.36 [1],unless P=NP, while a 2-approximation factor for it can be trivially obtained by taking all the vertices of a maximal matchingin the graph. However, improving this simple 2-approximation algorithm is a hard task [2, 3].

In this paper, based on a lower bound on the objective value of VCP feasible solutions,we introduce a (2-ε𝜀\varepsilonitalic_ε)-approximation ratio, where the value of ε𝜀\varepsilonitalic_ε is not constant.Then, we introduce a new semidefinite programming (SDP) formulation and fix the ε𝜀\varepsilonitalic_ε value equal to ε𝜀\varepsilonitalic_ε=0.000001,to produce a 1.999999-approximation ratio on arbitrary graphs.

The rest of the paper is structured as follows.Section 2 is about the vertex cover problem and introduces new properties about it.In section 3, using a new SDP model whose solution satisfies the properties, we propose a solution algorithm for VCPwith a performance ratio of 1.999999 on arbitrary graphs.Finally, Section 4 concludes the paper.

2 Performance ratio based on VCP feasible solutions

In the mathematical discipline of graph theory, a vertex cover of a graph is a set of vertices such thateach edge of the graph is incident to at least one vertex of the set. The problem of finding a minimum vertex coveris a typical example of an NP-complete optimization problem. In this section,we calculate the performance ratios of VCP feasible solutions to produce an approximation ratio of 2-ε𝜀\varepsilonitalic_ε,where the value of ε𝜀\varepsilonitalic_ε is not constant and it depends on the VCP objective value.Then, in the next section, we will fix the value of ε𝜀\varepsilonitalic_ε equal to ε𝜀\varepsilonitalic_ε=0.000001, to produce a 1.999999-approximation ratiofor the vertex cover problem.

Let G=(V,E)𝐺𝑉𝐸G=(V,E)italic_G = ( italic_V , italic_E ) be an undirected graph on vertex set V𝑉Vitalic_V and edge set E𝐸Eitalic_E, where \midV=n\mid=n∣ = italic_n.Throughout this paper, z(G)superscript𝑧𝐺z^{*}(G)italic_z start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_G ) is the optimal value for the vertex cover problem on G𝐺Gitalic_G, andVCP feasible solutions have been introduced by a vertex partitioning V=V1V0𝑉subscript𝑉1subscript𝑉0V=V_{1}\cup V_{0}italic_V = italic_V start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ∪ italic_V start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT with an objective value V1delimited-∣∣subscript𝑉1\mid V_{1}\mid∣ italic_V start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ∣.

The integer linear programming (ILP) model for VCP is as follows; i.e. z1=z(G)𝑧superscript1superscript𝑧𝐺z1^{*}=z^{*}(G)italic_z 1 start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT = italic_z start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_G ).

(1)mins.t.z1=iVxi1𝑚𝑖subscript𝑛formulae-sequence𝑠𝑡𝑧1subscript𝑖𝑉subscript𝑥𝑖(1)\ min_{s.t.}\ z1=\sum_{i\in V}x_{i}( 1 ) italic_m italic_i italic_n start_POSTSUBSCRIPT italic_s . italic_t . end_POSTSUBSCRIPT italic_z 1 = ∑ start_POSTSUBSCRIPT italic_i ∈ italic_V end_POSTSUBSCRIPT italic_x start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT
xi+xj1ijEformulae-sequencesubscript𝑥𝑖subscript𝑥𝑗1𝑖𝑗𝐸x_{i}+x_{j}\geq 1\ \ \ ij\in Eitalic_x start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT + italic_x start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ≥ 1 italic_i italic_j ∈ italic_E
xi{0,+1}iVformulae-sequencesubscript𝑥𝑖01𝑖𝑉x_{i}\in\{0,+1\}\ \ \ i\in Vitalic_x start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ∈ { 0 , + 1 } italic_i ∈ italic_V

Lemma 1. [4] Let xsuperscript𝑥x^{*}italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT be an extreme optimal solution to the linear programming (LP) relaxation of the model (1).Then xj{0,0.5,1}superscriptsubscript𝑥𝑗00.51x_{j}^{*}\in\{0,0.5,1\}italic_x start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ∈ { 0 , 0.5 , 1 } for jV𝑗𝑉j\in Vitalic_j ∈ italic_V. If we define V0={jVxj=0}superscript𝑉0conditional-set𝑗𝑉superscriptsubscript𝑥𝑗0V^{0}=\{j\in V\mid x_{j}^{*}=0\}italic_V start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT = { italic_j ∈ italic_V ∣ italic_x start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT = 0 }, V0.5={jVxj=0.5}superscript𝑉0.5conditional-set𝑗𝑉superscriptsubscript𝑥𝑗0.5V^{0.5}=\{j\in V\mid x_{j}^{*}=0.5\}italic_V start_POSTSUPERSCRIPT 0.5 end_POSTSUPERSCRIPT = { italic_j ∈ italic_V ∣ italic_x start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT = 0.5 } andV1={jVxj=1}superscript𝑉1conditional-set𝑗𝑉superscriptsubscript𝑥𝑗1V^{1}=\{j\in V\mid x_{j}^{*}=1\}italic_V start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT = { italic_j ∈ italic_V ∣ italic_x start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT = 1 }, then there exists a VCP optimal solution which includes all of the vertices V1superscript𝑉1V^{1}italic_V start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT, and it is a subset of V0.5V1superscript𝑉0.5superscript𝑉1V^{0.5}\cup V^{1}italic_V start_POSTSUPERSCRIPT 0.5 end_POSTSUPERSCRIPT ∪ italic_V start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT.

Theorem 1. Let xsuperscript𝑥x^{*}italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT be an extreme optimal solution to the LP relaxation of the model (1),V0={jVxj=0}superscript𝑉0conditional-set𝑗𝑉superscriptsubscript𝑥𝑗0V^{0}=\{j\in V\mid x_{j}^{*}=0\}italic_V start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT = { italic_j ∈ italic_V ∣ italic_x start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT = 0 }, V0.5={jVxj=0.5}superscript𝑉0.5conditional-set𝑗𝑉superscriptsubscript𝑥𝑗0.5V^{0.5}=\{j\in V\mid x_{j}^{*}=0.5\}italic_V start_POSTSUPERSCRIPT 0.5 end_POSTSUPERSCRIPT = { italic_j ∈ italic_V ∣ italic_x start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT = 0.5 }, V1={jVxj=1}superscript𝑉1conditional-set𝑗𝑉superscriptsubscript𝑥𝑗1V^{1}=\{j\in V\mid x_{j}^{*}=1\}italic_V start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT = { italic_j ∈ italic_V ∣ italic_x start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT = 1 }, and G0.5subscript𝐺0.5G_{0.5}italic_G start_POSTSUBSCRIPT 0.5 end_POSTSUBSCRIPTbe the induced graph on the vertices V0.5superscript𝑉0.5V^{0.5}italic_V start_POSTSUPERSCRIPT 0.5 end_POSTSUPERSCRIPT. If we can introduce a vertex cover feasible partitioningV0.5=V10.5V00.5superscript𝑉0.5superscriptsubscript𝑉10.5superscriptsubscript𝑉00.5V^{0.5}=V_{1}^{0.5}\cup V_{0}^{0.5}italic_V start_POSTSUPERSCRIPT 0.5 end_POSTSUPERSCRIPT = italic_V start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 0.5 end_POSTSUPERSCRIPT ∪ italic_V start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 0.5 end_POSTSUPERSCRIPT with an approximation ratio of 1ρ<21𝜌21\leq\rho<21 ≤ italic_ρ < 2, for the VCP on G0.5subscript𝐺0.5G_{0.5}italic_G start_POSTSUBSCRIPT 0.5 end_POSTSUBSCRIPT,then the vertex cover feasible partitioning V=(V1V0)=(V10.5V1)(V00.5V0)𝑉subscript𝑉1subscript𝑉0superscriptsubscript𝑉10.5superscript𝑉1superscriptsubscript𝑉00.5superscript𝑉0V=(V_{1}\cup V_{0})=(V_{1}^{0.5}\cup V^{1})\cup(V_{0}^{0.5}\cup V^{0})italic_V = ( italic_V start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ∪ italic_V start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) = ( italic_V start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 0.5 end_POSTSUPERSCRIPT ∪ italic_V start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT ) ∪ ( italic_V start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 0.5 end_POSTSUPERSCRIPT ∪ italic_V start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT ),has an approximation ratio of 1ρ<21𝜌21\leq\rho<21 ≤ italic_ρ < 2, for the VCP on G𝐺Gitalic_G.
Proof. Based on the approximation ratio of V10.5z(G0.5)ρdelimited-∣∣superscriptsubscript𝑉10.5superscript𝑧subscript𝐺0.5𝜌\frac{\mid V_{1}^{0.5}\mid}{z^{*}(G_{0.5})}\leq\rhodivide start_ARG ∣ italic_V start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 0.5 end_POSTSUPERSCRIPT ∣ end_ARG start_ARG italic_z start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_G start_POSTSUBSCRIPT 0.5 end_POSTSUBSCRIPT ) end_ARG ≤ italic_ρ, we have,

V10.5+V1ρz(G0.5)+ρV1delimited-∣∣superscriptsubscript𝑉10.5delimited-∣∣superscript𝑉1𝜌superscript𝑧subscript𝐺0.5𝜌delimited-∣∣superscript𝑉1\mid V_{1}^{0.5}\mid+\mid V^{1}\mid\leq\rho z^{*}(G_{0.5})+\rho\mid V^{1}\mid∣ italic_V start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 0.5 end_POSTSUPERSCRIPT ∣ + ∣ italic_V start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT ∣ ≤ italic_ρ italic_z start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_G start_POSTSUBSCRIPT 0.5 end_POSTSUBSCRIPT ) + italic_ρ ∣ italic_V start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT ∣

Therefore,V1z(G)=V10.5+V1z(G0.5)+V1ρdelimited-∣∣subscript𝑉1superscript𝑧𝐺delimited-∣∣superscriptsubscript𝑉10.5delimited-∣∣superscript𝑉1superscript𝑧subscript𝐺0.5delimited-∣∣superscript𝑉1limit-from𝜌\frac{\mid V_{1}\mid}{z^{*}(G)}=\frac{\mid V_{1}^{0.5}\mid+\mid V^{1}\mid}{z^{%*}(G_{0.5})+\mid V^{1}\mid}\leq\rho\ \diamonddivide start_ARG ∣ italic_V start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ∣ end_ARG start_ARG italic_z start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_G ) end_ARG = divide start_ARG ∣ italic_V start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 0.5 end_POSTSUPERSCRIPT ∣ + ∣ italic_V start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT ∣ end_ARG start_ARG italic_z start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_G start_POSTSUBSCRIPT 0.5 end_POSTSUBSCRIPT ) + ∣ italic_V start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT ∣ end_ARG ≤ italic_ρ ⋄

Based on the Theorem (1), it is sufficient to produce an approximation ratio of 1ρ<21𝜌21\leq\rho<21 ≤ italic_ρ < 2, on G0.5subscript𝐺0.5G_{0.5}italic_G start_POSTSUBSCRIPT 0.5 end_POSTSUBSCRIPT.Then, let’s focus on G0.5subscript𝐺0.5G_{0.5}italic_G start_POSTSUBSCRIPT 0.5 end_POSTSUBSCRIPT and assume that for the optimal solution of the LP relaxation of the model (1), we haveV0=V1={}superscript𝑉0superscript𝑉1V^{0}=V^{1}=\{\}italic_V start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT = italic_V start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT = { }, V0.5=Vsuperscript𝑉0.5𝑉V^{0.5}=Vitalic_V start_POSTSUPERSCRIPT 0.5 end_POSTSUPERSCRIPT = italic_V; i.e. G=G0.5𝐺subscript𝐺0.5G=G_{0.5}italic_G = italic_G start_POSTSUBSCRIPT 0.5 end_POSTSUBSCRIPT.

We know that we can efficiently solve the following SDP formulation,as a relaxation of the VCP model (1).

(2)mins.t.z2=iVXoi2𝑚𝑖subscript𝑛formulae-sequence𝑠𝑡𝑧2subscript𝑖𝑉subscript𝑋𝑜𝑖(2)\ min_{s.t.}\ z2=\sum_{i\in V}X_{oi}( 2 ) italic_m italic_i italic_n start_POSTSUBSCRIPT italic_s . italic_t . end_POSTSUBSCRIPT italic_z 2 = ∑ start_POSTSUBSCRIPT italic_i ∈ italic_V end_POSTSUBSCRIPT italic_X start_POSTSUBSCRIPT italic_o italic_i end_POSTSUBSCRIPT
Xoi+Xoj1ijEformulae-sequencesubscript𝑋𝑜𝑖subscript𝑋𝑜𝑗1𝑖𝑗𝐸X_{oi}+X_{oj}\geq 1\ \ \ ij\in Eitalic_X start_POSTSUBSCRIPT italic_o italic_i end_POSTSUBSCRIPT + italic_X start_POSTSUBSCRIPT italic_o italic_j end_POSTSUBSCRIPT ≥ 1 italic_i italic_j ∈ italic_E
0Xoi+1iVformulae-sequence0subscript𝑋𝑜𝑖1𝑖𝑉0\leq X_{oi}\leq+1\ \ \ i\in V0 ≤ italic_X start_POSTSUBSCRIPT italic_o italic_i end_POSTSUBSCRIPT ≤ + 1 italic_i ∈ italic_V
X0succeeds-or-equals𝑋0X\succeq 0italic_X ⪰ 0

This model can be written as follows,

(3)mins.t.z3=iVXoi3𝑚𝑖subscript𝑛formulae-sequence𝑠𝑡𝑧3subscript𝑖𝑉subscript𝑋𝑜𝑖(3)\ min_{s.t.}\ z3=\sum_{i\in V}X_{oi}( 3 ) italic_m italic_i italic_n start_POSTSUBSCRIPT italic_s . italic_t . end_POSTSUBSCRIPT italic_z 3 = ∑ start_POSTSUBSCRIPT italic_i ∈ italic_V end_POSTSUBSCRIPT italic_X start_POSTSUBSCRIPT italic_o italic_i end_POSTSUBSCRIPT
Xoi+XojXij=1ijEformulae-sequencesubscript𝑋𝑜𝑖subscript𝑋𝑜𝑗subscript𝑋𝑖𝑗1𝑖𝑗𝐸X_{oi}+X_{oj}-X_{ij}=1\ \ \ ij\in Eitalic_X start_POSTSUBSCRIPT italic_o italic_i end_POSTSUBSCRIPT + italic_X start_POSTSUBSCRIPT italic_o italic_j end_POSTSUBSCRIPT - italic_X start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT = 1 italic_i italic_j ∈ italic_E
Xii=1, 0Xij+1i,jV{o}formulae-sequenceformulae-sequencesubscript𝑋𝑖𝑖1 0subscript𝑋𝑖𝑗1𝑖𝑗𝑉𝑜X_{ii}=1,\ \ \ 0\leq X_{ij}\leq+1\ \ \ i,j\in V\cup\{o\}italic_X start_POSTSUBSCRIPT italic_i italic_i end_POSTSUBSCRIPT = 1 , 0 ≤ italic_X start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT ≤ + 1 italic_i , italic_j ∈ italic_V ∪ { italic_o }
X0succeeds-or-equals𝑋0X\succeq 0italic_X ⪰ 0

Moreover, by introducing the normal vectors vo,v1,,vnsubscript𝑣𝑜subscript𝑣1subscript𝑣𝑛v_{o},v_{1},...,v_{n}italic_v start_POSTSUBSCRIPT italic_o end_POSTSUBSCRIPT , italic_v start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_v start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT, the SDP model (3) can be written as follows,where vivj=Xijsubscript𝑣𝑖subscript𝑣𝑗subscript𝑋𝑖𝑗v_{i}v_{j}=X_{ij}italic_v start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT italic_v start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT = italic_X start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT, V1={iVvi=vo}subscript𝑉1conditional-set𝑖𝑉subscript𝑣𝑖subscript𝑣𝑜V_{1}=\{i\in V\mid v_{i}=v_{o}\}italic_V start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT = { italic_i ∈ italic_V ∣ italic_v start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT = italic_v start_POSTSUBSCRIPT italic_o end_POSTSUBSCRIPT } is a feasible vertex cover,and Vo=VV1subscript𝑉𝑜𝑉subscript𝑉1V_{o}=V-V_{1}italic_V start_POSTSUBSCRIPT italic_o end_POSTSUBSCRIPT = italic_V - italic_V start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT is the set of perpendicular vectors to vosubscript𝑣𝑜v_{o}italic_v start_POSTSUBSCRIPT italic_o end_POSTSUBSCRIPT.

(4)mins.t.z4=iVvovi4𝑚𝑖subscript𝑛formulae-sequence𝑠𝑡𝑧4subscript𝑖𝑉subscript𝑣𝑜subscript𝑣𝑖(4)\ min_{s.t.}\ z4=\sum_{i\in V}v_{o}v_{i}( 4 ) italic_m italic_i italic_n start_POSTSUBSCRIPT italic_s . italic_t . end_POSTSUBSCRIPT italic_z 4 = ∑ start_POSTSUBSCRIPT italic_i ∈ italic_V end_POSTSUBSCRIPT italic_v start_POSTSUBSCRIPT italic_o end_POSTSUBSCRIPT italic_v start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT
vovi+vovjvivj=1ijEformulae-sequencesubscript𝑣𝑜subscript𝑣𝑖subscript𝑣𝑜subscript𝑣𝑗subscript𝑣𝑖subscript𝑣𝑗1𝑖𝑗𝐸v_{o}v_{i}+v_{o}v_{j}-v_{i}v_{j}=1\ \ \ ij\in Eitalic_v start_POSTSUBSCRIPT italic_o end_POSTSUBSCRIPT italic_v start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT + italic_v start_POSTSUBSCRIPT italic_o end_POSTSUBSCRIPT italic_v start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT - italic_v start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT italic_v start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT = 1 italic_i italic_j ∈ italic_E
vivi=1, 0vivj+1i,jV{o}formulae-sequenceformulae-sequencesubscript𝑣𝑖subscript𝑣𝑖1 0subscript𝑣𝑖subscript𝑣𝑗1𝑖𝑗𝑉𝑜v_{i}v_{i}=1,\ \ \ 0\leq v_{i}v_{j}\leq+1\ \ \ i,j\in V\cup\{o\}italic_v start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT italic_v start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT = 1 , 0 ≤ italic_v start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT italic_v start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ≤ + 1 italic_i , italic_j ∈ italic_V ∪ { italic_o }

Theorem 2. Let n2+nk𝑛2𝑛𝑘\frac{n}{2}+\frac{n}{k}divide start_ARG italic_n end_ARG start_ARG 2 end_ARG + divide start_ARG italic_n end_ARG start_ARG italic_k end_ARG be a lower bound on VCP optimal value (z(G)n2+nk=(k+2)n2ksuperscript𝑧𝐺𝑛2𝑛𝑘𝑘2𝑛2𝑘z^{*}(G)\geq\frac{n}{2}+\frac{n}{k}=\frac{(k+2)n}{2k}italic_z start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_G ) ≥ divide start_ARG italic_n end_ARG start_ARG 2 end_ARG + divide start_ARG italic_n end_ARG start_ARG italic_k end_ARG = divide start_ARG ( italic_k + 2 ) italic_n end_ARG start_ARG 2 italic_k end_ARG). Then, for all vertex cover feasible partitioning V=V1V0𝑉subscript𝑉1subscript𝑉0V=V_{1}\cup V_{0}italic_V = italic_V start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ∪ italic_V start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT, we have the approximation ratioV1z(G)2kk+2<2delimited-∣∣subscript𝑉1superscript𝑧𝐺2𝑘𝑘22\frac{\mid V_{1}\mid}{z^{*}(G)}\leq\frac{2k}{k+2}<2divide start_ARG ∣ italic_V start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ∣ end_ARG start_ARG italic_z start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_G ) end_ARG ≤ divide start_ARG 2 italic_k end_ARG start_ARG italic_k + 2 end_ARG < 2.
Proof. If z(G)(k+2)n2ksuperscript𝑧𝐺𝑘2𝑛2𝑘z^{*}(G)\geq\frac{(k+2)n}{2k}italic_z start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_G ) ≥ divide start_ARG ( italic_k + 2 ) italic_n end_ARG start_ARG 2 italic_k end_ARG, then nz(G)2kk+2𝑛superscript𝑧𝐺2𝑘𝑘2\frac{n}{z^{*}(G)}\leq\frac{2k}{k+2}divide start_ARG italic_n end_ARG start_ARG italic_z start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_G ) end_ARG ≤ divide start_ARG 2 italic_k end_ARG start_ARG italic_k + 2 end_ARG.Therefore,

V1z(G)nz(G)2kk+2<2delimited-∣∣subscript𝑉1superscript𝑧𝐺𝑛superscript𝑧𝐺2𝑘𝑘22\frac{\mid V_{1}\mid}{z^{*}(G)}\leq\frac{n}{z^{*}(G)}\leq\frac{2k}{k+2}<2divide start_ARG ∣ italic_V start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ∣ end_ARG start_ARG italic_z start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_G ) end_ARG ≤ divide start_ARG italic_n end_ARG start_ARG italic_z start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_G ) end_ARG ≤ divide start_ARG 2 italic_k end_ARG start_ARG italic_k + 2 end_ARG < 2

and this completes the Proof \diamond

Theorem 3. Let z(G)n2superscript𝑧𝐺𝑛2z^{*}(G)\geq\frac{n}{2}italic_z start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_G ) ≥ divide start_ARG italic_n end_ARG start_ARG 2 end_ARG, and we have a VCP feasible partitioning V=V1V0𝑉subscript𝑉1subscript𝑉0V=V_{1}\cup V_{0}italic_V = italic_V start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ∪ italic_V start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT,where V1knk+1delimited-∣∣subscript𝑉1𝑘𝑛𝑘1\mid V_{1}\mid\leq\frac{kn}{k+1}∣ italic_V start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ∣ ≤ divide start_ARG italic_k italic_n end_ARG start_ARG italic_k + 1 end_ARG and V0nk+1delimited-∣∣subscript𝑉0𝑛𝑘1\mid V_{0}\mid\geq\frac{n}{k+1}∣ italic_V start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ∣ ≥ divide start_ARG italic_n end_ARG start_ARG italic_k + 1 end_ARG (or V1kV0delimited-∣∣subscript𝑉1𝑘delimited-∣∣subscript𝑉0\mid V_{1}\mid\leq k\mid V_{0}\mid∣ italic_V start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ∣ ≤ italic_k ∣ italic_V start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ∣). Then, based on such a solution, we have an approximation ratio V1z(G)2kk+1<2delimited-∣∣subscript𝑉1superscript𝑧𝐺2𝑘𝑘12\frac{\mid V_{1}\mid}{z^{*}(G)}\leq\frac{2k}{k+1}<2divide start_ARG ∣ italic_V start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ∣ end_ARG start_ARG italic_z start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_G ) end_ARG ≤ divide start_ARG 2 italic_k end_ARG start_ARG italic_k + 1 end_ARG < 2.
Proof. If V1knk+1delimited-∣∣subscript𝑉1𝑘𝑛𝑘1\mid V_{1}\mid\leq\frac{kn}{k+1}∣ italic_V start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ∣ ≤ divide start_ARG italic_k italic_n end_ARG start_ARG italic_k + 1 end_ARG, then nk+1kV1𝑛𝑘1𝑘delimited-∣∣subscript𝑉1n\geq\frac{k+1}{k}\mid V_{1}\miditalic_n ≥ divide start_ARG italic_k + 1 end_ARG start_ARG italic_k end_ARG ∣ italic_V start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ∣.Hence, z(G)n2k+12kV1superscript𝑧𝐺𝑛2𝑘12𝑘delimited-∣∣subscript𝑉1z^{*}(G)\geq\frac{n}{2}\geq\frac{k+1}{2k}\mid V_{1}\miditalic_z start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_G ) ≥ divide start_ARG italic_n end_ARG start_ARG 2 end_ARG ≥ divide start_ARG italic_k + 1 end_ARG start_ARG 2 italic_k end_ARG ∣ italic_V start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ∣ and V1z(G)2kk+1<2delimited-∣∣subscript𝑉1superscript𝑧𝐺2𝑘𝑘1limit-from2\frac{\mid V_{1}\mid}{z^{*}(G)}\leq\frac{2k}{k+1}<2\ \diamonddivide start_ARG ∣ italic_V start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ∣ end_ARG start_ARG italic_z start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_G ) end_ARG ≤ divide start_ARG 2 italic_k end_ARG start_ARG italic_k + 1 end_ARG < 2 ⋄

In the next section, we will introduce a new SDP model to find a suitable lower bound (and apply Theorem 2) or a suitable feasible solution (and apply Theorem 3).

3 A (1.999999)-approximation algorithm on arbitrary graphs

In section 2, we introduced a (2-ε𝜀\varepsilonitalic_ε)-approximation ratio for VCP,where ε𝜀\varepsilonitalic_ε value was not constant. In this section, we fix the value of ε𝜀\varepsilonitalic_ε equal to ε𝜀\varepsilonitalic_ε=0.000001to produce a 1.999999-approximation ratio on arbitrary graphs. To do this,we introduce the following property on a solution of the SDP model (4).

Property 1. For some vertex cover problems, both of the following conditions occur after solving the SDP model (4).

a) For less than 0.000001n of vertices jV𝑗𝑉j\in Vitalic_j ∈ italic_V and corresponding vectors we have vovj<0.5superscriptsubscript𝑣𝑜superscriptsubscript𝑣𝑗0.5v_{o}^{*}v_{j}^{*}<0.5italic_v start_POSTSUBSCRIPT italic_o end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_v start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT < 0.5.

b) For less than 0.01n of vertices jV𝑗𝑉j\in Vitalic_j ∈ italic_V and corresponding vectors we have vovj>0.5004superscriptsubscript𝑣𝑜superscriptsubscript𝑣𝑗0.5004v_{o}^{*}v_{j}^{*}>0.5004italic_v start_POSTSUBSCRIPT italic_o end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_v start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT > 0.5004 .

Theorem 4. If z(G)n2superscript𝑧𝐺𝑛2z^{*}(G)\geq\frac{n}{2}italic_z start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_G ) ≥ divide start_ARG italic_n end_ARG start_ARG 2 end_ARG and the optimal solution of the SDP model (4) does not meet the Property (1),then we can produce a VCP solution with a performance ratio of 1.999999.
Proof. If the optimal solution of the SDP model (4) does not meet the Property (1.a),then we can introduce V0={jVvovj<0.5}subscript𝑉0conditional-set𝑗𝑉superscriptsubscript𝑣𝑜superscriptsubscript𝑣𝑗0.5V_{0}=\{j\in V\mid v_{o}^{*}v_{j}^{*}<0.5\}italic_V start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = { italic_j ∈ italic_V ∣ italic_v start_POSTSUBSCRIPT italic_o end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_v start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT < 0.5 } and V1=VV0subscript𝑉1𝑉subscript𝑉0V_{1}=V-V_{0}italic_V start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT = italic_V - italic_V start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT, to have a VCP feasible solutionwith V00.000001ndelimited-∣∣subscript𝑉00.000001𝑛\mid V_{0}\mid\geq 0.000001n∣ italic_V start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ∣ ≥ 0.000001 italic_n and V10.999999n999999V0delimited-∣∣subscript𝑉10.999999𝑛999999delimited-∣∣subscript𝑉0\mid V_{1}\mid\leq 0.999999n\leq 999999\mid V_{0}\mid∣ italic_V start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ∣ ≤ 0.999999 italic_n ≤ 999999 ∣ italic_V start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ∣.Therefore, for such a solution and based on the Theorem (3), we have an approximation ratio ofV1z(G)<2(999999)999999+1=1.999998<1.999999delimited-∣∣subscript𝑉1superscript𝑧𝐺299999999999911.9999981.999999\frac{\mid V_{1}\mid}{z^{*}(G)}<\frac{2(999999)}{999999+1}=1.999998<1.999999divide start_ARG ∣ italic_V start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ∣ end_ARG start_ARG italic_z start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_G ) end_ARG < divide start_ARG 2 ( 999999 ) end_ARG start_ARG 999999 + 1 end_ARG = 1.999998 < 1.999999.

Otherwise, if the optimal solution of the SDP model (4) meets the Property (1.a) but does not meet the Property (1.b), then there exists the following lower bound on z(G)superscript𝑧𝐺z^{*}(G)italic_z start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_G ) value.

z(G)z4(0)(0.000001n){s.t.vovj<0.5}superscript𝑧𝐺𝑧superscript40subscript0.000001𝑛formulae-sequence𝑠𝑡superscriptsubscript𝑣𝑜superscriptsubscript𝑣𝑗0.5z^{*}(G)\geq z4^{*}\geq(0)(0.000001n)_{\{s.t.\ v_{o}^{*}v_{j}^{*}<0.5\}}italic_z start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_G ) ≥ italic_z 4 start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ≥ ( 0 ) ( 0.000001 italic_n ) start_POSTSUBSCRIPT { italic_s . italic_t . italic_v start_POSTSUBSCRIPT italic_o end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_v start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT < 0.5 } end_POSTSUBSCRIPT
+(0.5)(0.989999n){s.t.vovj0.5}+(0.5004)(0.01n){s.t.vovj>0.5004}0.5subscript0.989999𝑛formulae-sequence𝑠𝑡superscriptsubscript𝑣𝑜superscriptsubscript𝑣𝑗0.50.5004subscript0.01𝑛formulae-sequence𝑠𝑡superscriptsubscript𝑣𝑜superscriptsubscript𝑣𝑗0.5004+(0.5)(0.989999n)_{\{s.t.\ v_{o}^{*}v_{j}^{*}\geq 0.5\}}+(0.5004)(0.01n)_{\{s.%t.\ v_{o}^{*}v_{j}^{*}>0.5004\}}+ ( 0.5 ) ( 0.989999 italic_n ) start_POSTSUBSCRIPT { italic_s . italic_t . italic_v start_POSTSUBSCRIPT italic_o end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_v start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ≥ 0.5 } end_POSTSUBSCRIPT + ( 0.5004 ) ( 0.01 italic_n ) start_POSTSUBSCRIPT { italic_s . italic_t . italic_v start_POSTSUBSCRIPT italic_o end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_v start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT > 0.5004 } end_POSTSUBSCRIPT
=n2+0.0000035nabsent𝑛20.0000035𝑛=\frac{n}{2}+0.0000035n= divide start_ARG italic_n end_ARG start_ARG 2 end_ARG + 0.0000035 italic_n

Note that, the Property (1.a) is met and we have less than 0.000001n of vertices jV𝑗𝑉j\in Vitalic_j ∈ italic_V with vovj<0.5superscriptsubscript𝑣𝑜superscriptsubscript𝑣𝑗0.5v_{o}^{*}v_{j}^{*}<0.5italic_v start_POSTSUBSCRIPT italic_o end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_v start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT < 0.5.The Property (1.b) is not met and we have more than 0.01n of vertices jV𝑗𝑉j\in Vitalic_j ∈ italic_V with vovj>0.5004superscriptsubscript𝑣𝑜superscriptsubscript𝑣𝑗0.5004v_{o}^{*}v_{j}^{*}>0.5004italic_v start_POSTSUBSCRIPT italic_o end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_v start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT > 0.5004.Therefore, in the above inequality, the first summation is the lower bound on the vertices jV𝑗𝑉j\in Vitalic_j ∈ italic_V with vovj<0.5superscriptsubscript𝑣𝑜superscriptsubscript𝑣𝑗0.5v_{o}^{*}v_{j}^{*}<0.5italic_v start_POSTSUBSCRIPT italic_o end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_v start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT < 0.5,and the third summation is the lower bound on only 0.01n of the vertices jV𝑗𝑉j\in Vitalic_j ∈ italic_V with vovj>0.5004superscriptsubscript𝑣𝑜superscriptsubscript𝑣𝑗0.5004v_{o}^{*}v_{j}^{*}>0.5004italic_v start_POSTSUBSCRIPT italic_o end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_v start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT > 0.5004. In other words,beyond the 0.01n of such vertices are considered in the second summation.Moreover, the second summation is the lower bound on the other vertices (the vertices jV𝑗𝑉j\in Vitalic_j ∈ italic_V with 0.5vovj0.50040.5superscriptsubscript𝑣𝑜superscriptsubscript𝑣𝑗0.50040.5\leq v_{o}^{*}v_{j}^{*}\leq 0.50040.5 ≤ italic_v start_POSTSUBSCRIPT italic_o end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_v start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ≤ 0.5004 or the vertices jV𝑗𝑉j\in Vitalic_j ∈ italic_V with vovj>0.5004superscriptsubscript𝑣𝑜superscriptsubscript𝑣𝑗0.5004v_{o}^{*}v_{j}^{*}>0.5004italic_v start_POSTSUBSCRIPT italic_o end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_v start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT > 0.5004and beyond the 0.01n of such vertices considered in the third summation).

Therefore, based on the above lower bound on z(G)superscript𝑧𝐺z^{*}(G)italic_z start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_G ) value and based on the Theorem (2), for all VCP feasible solutions V=V1V0𝑉subscript𝑉1subscript𝑉0V=V_{1}\cup V_{0}italic_V = italic_V start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ∪ italic_V start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT,we have the approximation ratio V1z(G)2(10.0000035)10.0000035+2<1.999999delimited-∣∣subscript𝑉1superscript𝑧𝐺210.000003510.00000352limit-from1.999999\frac{\mid V_{1}\mid}{z^{*}(G)}\leq\frac{2(\frac{1}{0.0000035})}{\frac{1}{0.00%00035}+2}<1.999999\ \diamonddivide start_ARG ∣ italic_V start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ∣ end_ARG start_ARG italic_z start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_G ) end_ARG ≤ divide start_ARG 2 ( divide start_ARG 1 end_ARG start_ARG 0.0000035 end_ARG ) end_ARG start_ARG divide start_ARG 1 end_ARG start_ARG 0.0000035 end_ARG + 2 end_ARG < 1.999999 ⋄

Definition 1. Let ε𝜀\varepsilonitalic_ε=0.0004 and Vε={jV0.5vovj0.5+ε}subscript𝑉𝜀conditional-set𝑗𝑉0.5superscriptsubscript𝑣𝑜superscriptsubscript𝑣𝑗0.5𝜀V_{\varepsilon}=\{j\in V\mid 0.5\leq v_{o}^{*}v_{j}^{*}\leq 0.5+\varepsilon\}italic_V start_POSTSUBSCRIPT italic_ε end_POSTSUBSCRIPT = { italic_j ∈ italic_V ∣ 0.5 ≤ italic_v start_POSTSUBSCRIPT italic_o end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_v start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ≤ 0.5 + italic_ε }.

After solving the SDP model (4) on problems with z(G)n2superscript𝑧𝐺𝑛2z^{*}(G)\geq\frac{n}{2}italic_z start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_G ) ≥ divide start_ARG italic_n end_ARG start_ARG 2 end_ARG,
i) If the solution of the SDP model (4) does not meet the Property (1), then we have a performance ratio of 1.999999,
ii) Otherwise (The solution of the SDP model (4) meets the Property (1)), for more than 0.989999n of vertices jV𝑗𝑉j\in Vitalic_j ∈ italic_V,we have 0.5vovj0.5+ε0.5superscriptsubscript𝑣𝑜superscriptsubscript𝑣𝑗0.5𝜀0.5\leq v_{o}^{*}v_{j}^{*}\leq 0.5+\varepsilon0.5 ≤ italic_v start_POSTSUBSCRIPT italic_o end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_v start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ≤ 0.5 + italic_ε; i.e. Vε0.989999ndelimited-∣∣subscript𝑉𝜀0.989999𝑛\mid V_{\varepsilon}\mid\geq 0.989999n∣ italic_V start_POSTSUBSCRIPT italic_ε end_POSTSUBSCRIPT ∣ ≥ 0.989999 italic_n. Moreover, for each edge ij𝑖𝑗ijitalic_i italic_j in Eε={ijEi,jVε}subscript𝐸𝜀conditional-set𝑖𝑗𝐸𝑖𝑗subscript𝑉𝜀E_{\varepsilon}=\{ij\in E\mid i,j\in V_{\varepsilon}\}italic_E start_POSTSUBSCRIPT italic_ε end_POSTSUBSCRIPT = { italic_i italic_j ∈ italic_E ∣ italic_i , italic_j ∈ italic_V start_POSTSUBSCRIPT italic_ε end_POSTSUBSCRIPT },we have vovi+vovjvivj=1superscriptsubscript𝑣𝑜superscriptsubscript𝑣𝑖superscriptsubscript𝑣𝑜superscriptsubscript𝑣𝑗superscriptsubscript𝑣𝑖superscriptsubscript𝑣𝑗1v_{o}^{*}v_{i}^{*}+v_{o}^{*}v_{j}^{*}-v_{i}^{*}v_{j}^{*}=1italic_v start_POSTSUBSCRIPT italic_o end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_v start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT + italic_v start_POSTSUBSCRIPT italic_o end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_v start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT - italic_v start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_v start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT = 1 (That is 0vivj2ε=0.00080superscriptsubscript𝑣𝑖superscriptsubscript𝑣𝑗2𝜀0.00080\leq v_{i}^{*}v_{j}^{*}\leq 2\varepsilon=0.00080 ≤ italic_v start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_v start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ≤ 2 italic_ε = 0.0008),and the corresponding vectors of each edge in Eεsubscript𝐸𝜀E_{\varepsilon}italic_E start_POSTSUBSCRIPT italic_ε end_POSTSUBSCRIPT are almost perpendicular to each other.

Therefore, to produce a VCP performance ratio of 1.999999 for problems with z(G)n2superscript𝑧𝐺𝑛2z^{*}(G)\geq\frac{n}{2}italic_z start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_G ) ≥ divide start_ARG italic_n end_ARG start_ARG 2 end_ARG,we need a solution for the SDP model (4) that does not meet the Property (1). To do this, we introduce a new SDP model.

Let G2=(Vnew,Enew)𝐺2subscript𝑉𝑛𝑒𝑤subscript𝐸𝑛𝑒𝑤G2=(V_{new},E_{new})italic_G 2 = ( italic_V start_POSTSUBSCRIPT italic_n italic_e italic_w end_POSTSUBSCRIPT , italic_E start_POSTSUBSCRIPT italic_n italic_e italic_w end_POSTSUBSCRIPT ) be a new graph, where we add two adjacent vertices a𝑎aitalic_a and b𝑏bitalic_b to the graph G𝐺Gitalic_G,and connect all vertices of G𝐺Gitalic_G to them.Then, based on the SDP model (4), and by introducing the normal vectors vo,v1,,vn,va,vbsubscript𝑣𝑜subscript𝑣1subscript𝑣𝑛subscript𝑣𝑎subscript𝑣𝑏v_{o},v_{1},...,v_{n},v_{a},v_{b}italic_v start_POSTSUBSCRIPT italic_o end_POSTSUBSCRIPT , italic_v start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_v start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT , italic_v start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT , italic_v start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT, we introduce a new SDP model as follows, where V1new=V1={iVnewvi=vo}subscript𝑉1𝑛𝑒𝑤subscript𝑉1conditional-set𝑖subscript𝑉𝑛𝑒𝑤subscript𝑣𝑖subscript𝑣𝑜V_{1new}=V_{1}=\{i\in V_{new}\mid v_{i}=v_{o}\}italic_V start_POSTSUBSCRIPT 1 italic_n italic_e italic_w end_POSTSUBSCRIPT = italic_V start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT = { italic_i ∈ italic_V start_POSTSUBSCRIPT italic_n italic_e italic_w end_POSTSUBSCRIPT ∣ italic_v start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT = italic_v start_POSTSUBSCRIPT italic_o end_POSTSUBSCRIPT } corresponds to a feasible vertex cover on graph G𝐺Gitalic_G, andV0new=V0=VV1subscript𝑉0𝑛𝑒𝑤subscript𝑉0𝑉subscript𝑉1V_{0new}=V_{0}=V-V_{1}italic_V start_POSTSUBSCRIPT 0 italic_n italic_e italic_w end_POSTSUBSCRIPT = italic_V start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = italic_V - italic_V start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT corresponds to perpendicular vectors to vosubscript𝑣𝑜v_{o}italic_v start_POSTSUBSCRIPT italic_o end_POSTSUBSCRIPT.

(5)mins.t.z5=iVvovi5𝑚𝑖subscript𝑛formulae-sequence𝑠𝑡𝑧5subscript𝑖𝑉subscript𝑣𝑜subscript𝑣𝑖(5)\ min_{s.t.}\ z5=\sum_{i\in V}v_{o}v_{i}( 5 ) italic_m italic_i italic_n start_POSTSUBSCRIPT italic_s . italic_t . end_POSTSUBSCRIPT italic_z 5 = ∑ start_POSTSUBSCRIPT italic_i ∈ italic_V end_POSTSUBSCRIPT italic_v start_POSTSUBSCRIPT italic_o end_POSTSUBSCRIPT italic_v start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT
SDP(4)constraintsonG𝑆𝐷𝑃4𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠𝑜𝑛𝐺SDP\ (4)\ constraints\ on\ Gitalic_S italic_D italic_P ( 4 ) italic_c italic_o italic_n italic_s italic_t italic_r italic_a italic_i italic_n italic_t italic_s italic_o italic_n italic_G
vovi+vovjvivj=1iV,j{a,b}formulae-sequencesubscript𝑣𝑜subscript𝑣𝑖subscript𝑣𝑜subscript𝑣𝑗subscript𝑣𝑖subscript𝑣𝑗1formulae-sequence𝑖𝑉𝑗𝑎𝑏v_{o}v_{i}+v_{o}v_{j}-v_{i}v_{j}=1\ \ \ i\in V,\ j\in\{a,b\}italic_v start_POSTSUBSCRIPT italic_o end_POSTSUBSCRIPT italic_v start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT + italic_v start_POSTSUBSCRIPT italic_o end_POSTSUBSCRIPT italic_v start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT - italic_v start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT italic_v start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT = 1 italic_i ∈ italic_V , italic_j ∈ { italic_a , italic_b }
0.5vivj+0.5iV,j{a,b}formulae-sequence0.5subscript𝑣𝑖subscript𝑣𝑗0.5formulae-sequence𝑖𝑉𝑗𝑎𝑏-0.5\leq v_{i}v_{j}\leq+0.5\ \ \ i\in V,\ j\in\{a,b\}- 0.5 ≤ italic_v start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT italic_v start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ≤ + 0.5 italic_i ∈ italic_V , italic_j ∈ { italic_a , italic_b }
vivi=1,vovi=+0.5i{a,b}formulae-sequencesubscript𝑣𝑖subscript𝑣𝑖1formulae-sequencesubscript𝑣𝑜subscript𝑣𝑖0.5𝑖𝑎𝑏v_{i}v_{i}=1,\ \ \ v_{o}v_{i}=\ +0.5\ \ \ i\in\{a,b\}italic_v start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT italic_v start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT = 1 , italic_v start_POSTSUBSCRIPT italic_o end_POSTSUBSCRIPT italic_v start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT = + 0.5 italic_i ∈ { italic_a , italic_b }
vavb= 0subscript𝑣𝑎subscript𝑣𝑏 0v_{a}v_{b}=\ 0italic_v start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT italic_v start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT = 0

Lemma 2. Due to the additional constraints, we have z5z4𝑧superscript5𝑧superscript4z5^{*}\geq z4^{*}italic_z 5 start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ≥ italic_z 4 start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT. Moreover, to produce a feasible solutionfor the SDP model (5) on G2𝐺2G2italic_G 2, we can add suitable vectors vasubscript𝑣𝑎v_{a}italic_v start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT and vbsubscript𝑣𝑏v_{b}italic_v start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT to each VCP feasible partitioning V=V1V0𝑉subscript𝑉1subscript𝑉0V=V_{1}\cup V_{0}italic_V = italic_V start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ∪ italic_V start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT on G𝐺Gitalic_G, wherevivj=+0.5subscript𝑣𝑖subscript𝑣𝑗0.5v_{i}v_{j}=\ +0.5italic_v start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT italic_v start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT = + 0.5 for iV1,j{a,b}formulae-sequence𝑖subscript𝑉1𝑗𝑎𝑏i\in V_{1},\ j\in\{a,b\}italic_i ∈ italic_V start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_j ∈ { italic_a , italic_b }, andvivj=0.5subscript𝑣𝑖subscript𝑣𝑗0.5v_{i}v_{j}=\ -0.5italic_v start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT italic_v start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT = - 0.5 for iV0,j{a,b}formulae-sequence𝑖subscript𝑉0𝑗𝑎𝑏i\in V_{0},\ j\in\{a,b\}italic_i ∈ italic_V start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_j ∈ { italic_a , italic_b }(For example, for vo=vi=[0.5,0.5,0.5,0.5]tV1subscript𝑣𝑜subscript𝑣𝑖superscript0.50.50.50.5𝑡subscript𝑉1v_{o}=v_{i}=[0.5,0.5,0.5,0.5]^{t}\in V_{1}italic_v start_POSTSUBSCRIPT italic_o end_POSTSUBSCRIPT = italic_v start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT = [ 0.5 , 0.5 , 0.5 , 0.5 ] start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT ∈ italic_V start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and vi=[0.5,0.5,0.5,0.5]tV0subscript𝑣𝑖superscript0.50.50.50.5𝑡subscript𝑉0v_{i}=[-0.5,-0.5,0.5,0.5]^{t}\in V_{0}italic_v start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT = [ - 0.5 , - 0.5 , 0.5 , 0.5 ] start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT ∈ italic_V start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT, we can introduce va=e1=[1,0,0,0]tsubscript𝑣𝑎subscript𝑒1superscript1000𝑡v_{a}=e_{1}=[1,0,0,0]^{t}italic_v start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT = italic_e start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT = [ 1 , 0 , 0 , 0 ] start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT, and vb=e2=[0,1,0,0]tsubscript𝑣𝑏subscript𝑒2superscript0100𝑡v_{b}=e_{2}=[0,1,0,0]^{t}italic_v start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT = italic_e start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT = [ 0 , 1 , 0 , 0 ] start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT). Therefore, z5z(G)𝑧superscript5superscript𝑧𝐺z5^{*}\leq z^{*}(G)italic_z 5 start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ≤ italic_z start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_G ).

We are going to prove that by solving the SDP model (5) on problems with z(G)n2superscript𝑧𝐺𝑛2z^{*}(G)\geq\frac{n}{2}italic_z start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_G ) ≥ divide start_ARG italic_n end_ARG start_ARG 2 end_ARG,it is impossible to produce a solution that meets the Property (1) on G𝐺Gitalic_G, unless the induced graph on Vεsubscript𝑉𝜀V_{\varepsilon}italic_V start_POSTSUBSCRIPT italic_ε end_POSTSUBSCRIPT is bipartite.

Theorem 5. For four normalized vectors v1,v2,v3,v4subscript𝑣1subscript𝑣2subscript𝑣3subscript𝑣4v_{1},v_{2},v_{3},v_{4}italic_v start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_v start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , italic_v start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT , italic_v start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT which are perpendicular to each other,there exists exactly one normalized vector v𝑣vitalic_v with vvi=0.5(i=1,2,3,4)𝑣subscript𝑣𝑖0.5𝑖1234vv_{i}=0.5\ (i=1,2,3,4)italic_v italic_v start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT = 0.5 ( italic_i = 1 , 2 , 3 , 4 ). Such a vector v𝑣vitalic_v satisfies the equation v=0.5(v1+v2+v3+v4)𝑣0.5subscript𝑣1subscript𝑣2subscript𝑣3subscript𝑣4v=0.5(v_{1}+v_{2}+v_{3}+v_{4})italic_v = 0.5 ( italic_v start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT + italic_v start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT + italic_v start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT + italic_v start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT ).
Proof.

Due to v1v2=0subscript𝑣1subscript𝑣20v_{1}v_{2}=0italic_v start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_v start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT = 0, we have v1+v2=v12+v22=2delimited-∣∣subscript𝑣1subscript𝑣2superscriptdelimited-∣∣subscript𝑣12superscriptdelimited-∣∣subscript𝑣222\mid v_{1}+v_{2}\mid=\sqrt{\mid v_{1}\mid^{2}+\mid v_{2}\mid^{2}}=\sqrt{2}∣ italic_v start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT + italic_v start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ∣ = square-root start_ARG ∣ italic_v start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ∣ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + ∣ italic_v start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ∣ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG = square-root start_ARG 2 end_ARG.

Due to v3v4=0subscript𝑣3subscript𝑣40v_{3}v_{4}=0italic_v start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT italic_v start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT = 0, we have v3+v4=v32+v42=2delimited-∣∣subscript𝑣3subscript𝑣4superscriptdelimited-∣∣subscript𝑣32superscriptdelimited-∣∣subscript𝑣422\mid v_{3}+v_{4}\mid=\sqrt{\mid v_{3}\mid^{2}+\mid v_{4}\mid^{2}}=\sqrt{2}∣ italic_v start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT + italic_v start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT ∣ = square-root start_ARG ∣ italic_v start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ∣ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + ∣ italic_v start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT ∣ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG = square-root start_ARG 2 end_ARG.

Due to (v1+v2)(v3+v4)=0subscript𝑣1subscript𝑣2subscript𝑣3subscript𝑣40(v_{1}+v_{2})(v_{3}+v_{4})=0( italic_v start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT + italic_v start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) ( italic_v start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT + italic_v start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT ) = 0, we have v1+v2+v3+v4=2delimited-∣∣subscript𝑣1subscript𝑣2subscript𝑣3subscript𝑣42\mid v_{1}+v_{2}+v_{3}+v_{4}\mid=2∣ italic_v start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT + italic_v start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT + italic_v start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT + italic_v start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT ∣ = 2.

Moreover, we have (v1+v2+v3+v4)v=2subscript𝑣1subscript𝑣2subscript𝑣3subscript𝑣4𝑣2(v_{1}+v_{2}+v_{3}+v_{4})v=2( italic_v start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT + italic_v start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT + italic_v start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT + italic_v start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT ) italic_v = 2. Hence, v1+v2+v3+v4vcos(θ)=2delimited-∣∣subscript𝑣1subscript𝑣2subscript𝑣3subscript𝑣4delimited-∣∣𝑣𝑐𝑜𝑠𝜃2\mid v_{1}+v_{2}+v_{3}+v_{4}\mid\mid v\mid cos(\theta)=2∣ italic_v start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT + italic_v start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT + italic_v start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT + italic_v start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT ∣ ∣ italic_v ∣ italic_c italic_o italic_s ( italic_θ ) = 2 andthis concludes that θ=0𝜃0\theta=0italic_θ = 0 and v=0.5(v1+v2+v3+v4)𝑣limit-from0.5subscript𝑣1subscript𝑣2subscript𝑣3subscript𝑣4v=0.5(v_{1}+v_{2}+v_{3}+v_{4})\ \diamonditalic_v = 0.5 ( italic_v start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT + italic_v start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT + italic_v start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT + italic_v start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT ) ⋄

proposition 1. For four normalized vectors v1,v2,v3,v4subscript𝑣1subscript𝑣2subscript𝑣3subscript𝑣4v_{1},v_{2},v_{3},v_{4}italic_v start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_v start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , italic_v start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT , italic_v start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT which are almost perpendicular to each other, their halved sum as w=0.5(v1+v2+v3+v4)𝑤0.5subscript𝑣1subscript𝑣2subscript𝑣3subscript𝑣4w=0.5(v_{1}+v_{2}+v_{3}+v_{4})italic_w = 0.5 ( italic_v start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT + italic_v start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT + italic_v start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT + italic_v start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT ), anda normalized vector v𝑣vitalic_v with 0.5vvi0.5+ε(i=1,2,3,4)0.5𝑣subscript𝑣𝑖0.5𝜀𝑖12340.5\leq vv_{i}\leq 0.5+\varepsilon\ (i=1,2,3,4)0.5 ≤ italic_v italic_v start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ≤ 0.5 + italic_ε ( italic_i = 1 , 2 , 3 , 4 ), the vector v𝑣vitalic_v is almost equal to w𝑤witalic_w. In other words,there exists a vector r𝑟ritalic_r with w+r=v𝑤𝑟𝑣w+r=vitalic_w + italic_r = italic_v, where εwvε,rεformulae-sequence𝜀delimited-∣∣𝑤delimited-∣∣𝑣𝜀delimited-∣∣𝑟𝜀-\varepsilon\leq\mid w\mid-\mid v\mid\leq\varepsilon,\ \mid r\mid\leq\varepsilon- italic_ε ≤ ∣ italic_w ∣ - ∣ italic_v ∣ ≤ italic_ε , ∣ italic_r ∣ ≤ italic_ε, and cos(w,v)1ε𝑐𝑜𝑠𝑤𝑣1𝜀cos(w,v)\geq 1-\varepsilonitalic_c italic_o italic_s ( italic_w , italic_v ) ≥ 1 - italic_ε.

Theorem 6. Let θ(v,w)=cos1(v.wvw)𝜃𝑣𝑤𝑐𝑜superscript𝑠1formulae-sequence𝑣𝑤delimited-∣∣𝑣delimited-∣∣𝑤\theta(v,w)=cos^{-1}(\frac{v.w}{\mid v\mid\mid w\mid})italic_θ ( italic_v , italic_w ) = italic_c italic_o italic_s start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ( divide start_ARG italic_v . italic_w end_ARG start_ARG ∣ italic_v ∣ ∣ italic_w ∣ end_ARG ), and a vector U𝑈Uitalic_U with U=2delimited-∣∣𝑈2\mid U\mid=\sqrt{2}∣ italic_U ∣ = square-root start_ARG 2 end_ARG, and 2n+12𝑛12n+12 italic_n + 1 normalized vectors v1,,v2n+1subscript𝑣1subscript𝑣2𝑛1v_{1},\dots,v_{2n+1}italic_v start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_v start_POSTSUBSCRIPT 2 italic_n + 1 end_POSTSUBSCRIPT, where Uvi=1(i=1,,2n+1)𝑈subscript𝑣𝑖1𝑖12𝑛1Uv_{i}=1\ (i=1,\dots,2n+1)italic_U italic_v start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT = 1 ( italic_i = 1 , … , 2 italic_n + 1 ), and 0vivi+1ε(i=1,,2n)0subscript𝑣𝑖subscript𝑣𝑖1𝜀𝑖12𝑛0\leq v_{i}v_{i+1}\leq\varepsilon\ (i=1,\dots,2n)0 ≤ italic_v start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT italic_v start_POSTSUBSCRIPT italic_i + 1 end_POSTSUBSCRIPT ≤ italic_ε ( italic_i = 1 , … , 2 italic_n ), and vi+vi+1(i=1,,2n)subscript𝑣𝑖subscript𝑣𝑖1𝑖12𝑛v_{i}+v_{i+1}\ (i=1,\dots,2n)italic_v start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT + italic_v start_POSTSUBSCRIPT italic_i + 1 end_POSTSUBSCRIPT ( italic_i = 1 , … , 2 italic_n ) is almost equal to U𝑈Uitalic_U (i.e. εUvi+vi+1ε𝜀delimited-∣∣𝑈delimited-∣∣subscript𝑣𝑖subscript𝑣𝑖1𝜀-\varepsilon\leq\mid U\mid-\mid v_{i}+v_{i+1}\mid\leq\varepsilon- italic_ε ≤ ∣ italic_U ∣ - ∣ italic_v start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT + italic_v start_POSTSUBSCRIPT italic_i + 1 end_POSTSUBSCRIPT ∣ ≤ italic_ε, and cos(U,vi+vi+1)1ε𝑐𝑜𝑠𝑈subscript𝑣𝑖subscript𝑣𝑖11𝜀cos(U,v_{i}+v_{i+1})\geq 1-\varepsilonitalic_c italic_o italic_s ( italic_U , italic_v start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT + italic_v start_POSTSUBSCRIPT italic_i + 1 end_POSTSUBSCRIPT ) ≥ 1 - italic_ε). Then, we have θ(U,v1++v2n)<θ(U,v1++v2n+1)𝜃𝑈subscript𝑣1subscript𝑣2𝑛𝜃𝑈subscript𝑣1subscript𝑣2𝑛1\theta(U,v_{1}+\dots+v_{2n})\ <\theta(U,v_{1}+\dots+v_{2n+1})italic_θ ( italic_U , italic_v start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT + ⋯ + italic_v start_POSTSUBSCRIPT 2 italic_n end_POSTSUBSCRIPT ) < italic_θ ( italic_U , italic_v start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT + ⋯ + italic_v start_POSTSUBSCRIPT 2 italic_n + 1 end_POSTSUBSCRIPT ).
Proof. We give proof by induction on n. For 3333 normalized vectors v1,v2,v3subscript𝑣1subscript𝑣2subscript𝑣3v_{1},v_{2},v_{3}italic_v start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_v start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , italic_v start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT, we have v1+v2subscript𝑣1subscript𝑣2v_{1}+v_{2}italic_v start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT + italic_v start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT is almost equal to U𝑈Uitalic_U and θ(U,v3)=45o𝜃𝑈subscript𝑣3superscript45𝑜\theta(U,v_{3})=45^{o}italic_θ ( italic_U , italic_v start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ) = 45 start_POSTSUPERSCRIPT italic_o end_POSTSUPERSCRIPT, and this concludes that cos(U,U+v3)=31010=0.94868𝑐𝑜𝑠𝑈𝑈subscript𝑣3310100.94868cos(U,U+v_{3})=\frac{3\sqrt{10}}{10}=0.94868italic_c italic_o italic_s ( italic_U , italic_U + italic_v start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ) = divide start_ARG 3 square-root start_ARG 10 end_ARG end_ARG start_ARG 10 end_ARG = 0.94868 and θ(U,v1+v2)<θ(U,v1+v2+v3)𝜃𝑈subscript𝑣1subscript𝑣2𝜃𝑈subscript𝑣1subscript𝑣2subscript𝑣3\theta(U,v_{1}+v_{2})\ <\theta(U,v_{1}+v_{2}+v_{3})italic_θ ( italic_U , italic_v start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT + italic_v start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) < italic_θ ( italic_U , italic_v start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT + italic_v start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT + italic_v start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ). Therefore, the Theorem is true for n=1𝑛1n=1italic_n = 1. Supposethat it is true for n1𝑛1n-1italic_n - 1, and we wantto prove it for n𝑛nitalic_n.

Let v1,,v2n+1subscript𝑣1subscript𝑣2𝑛1v_{1},\dots,v_{2n+1}italic_v start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_v start_POSTSUBSCRIPT 2 italic_n + 1 end_POSTSUBSCRIPT be 2n+12𝑛12n+12 italic_n + 1 normalized vectors that satisfy the properties of the theorem. Our inductive hypothesis implies that θ(U,v3++v2n)<θ(U,v3++v2n+1)𝜃𝑈subscript𝑣3subscript𝑣2𝑛𝜃𝑈subscript𝑣3subscript𝑣2𝑛1\theta(U,v_{3}+\dots+v_{2n})\ <\theta(U,v_{3}+\dots+v_{2n+1})italic_θ ( italic_U , italic_v start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT + ⋯ + italic_v start_POSTSUBSCRIPT 2 italic_n end_POSTSUBSCRIPT ) < italic_θ ( italic_U , italic_v start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT + ⋯ + italic_v start_POSTSUBSCRIPT 2 italic_n + 1 end_POSTSUBSCRIPT ). Therefore, by addition of the vector v1+v2subscript𝑣1subscript𝑣2v_{1}+v_{2}italic_v start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT + italic_v start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT we have θ(U,v1+v2+v3++v2n)<θ(U,v1+v2+v3++v2n+1)𝜃𝑈subscript𝑣1subscript𝑣2subscript𝑣3subscript𝑣2𝑛𝜃𝑈subscript𝑣1subscript𝑣2subscript𝑣3subscript𝑣2𝑛1\theta(U,v_{1}+v_{2}+v_{3}+\dots+v_{2n})\ <\theta(U,v_{1}+v_{2}+v_{3}+\dots+v_%{2n+1})italic_θ ( italic_U , italic_v start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT + italic_v start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT + italic_v start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT + ⋯ + italic_v start_POSTSUBSCRIPT 2 italic_n end_POSTSUBSCRIPT ) < italic_θ ( italic_U , italic_v start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT + italic_v start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT + italic_v start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT + ⋯ + italic_v start_POSTSUBSCRIPT 2 italic_n + 1 end_POSTSUBSCRIPT ) and this completes the proof \diamond

Theorem 7. Based on the solution of the SDP model (5), and by introducing U=2vovavb𝑈2superscriptsubscript𝑣𝑜superscriptsubscript𝑣𝑎superscriptsubscript𝑣𝑏U=2v_{o}^{*}-v_{a}^{*}-v_{b}^{*}italic_U = 2 italic_v start_POSTSUBSCRIPT italic_o end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT - italic_v start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT - italic_v start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT, we have

U=2,jVε:Uvj=1:formulae-sequencedelimited-∣∣𝑈2for-all𝑗subscript𝑉𝜀𝑈superscriptsubscript𝑣𝑗1\mid U\mid=\sqrt{2},\ \ \ \ \ \ \ \forall j\in V_{\varepsilon}:\ Uv_{j}^{*}=1∣ italic_U ∣ = square-root start_ARG 2 end_ARG , ∀ italic_j ∈ italic_V start_POSTSUBSCRIPT italic_ε end_POSTSUBSCRIPT : italic_U italic_v start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT = 1

Proof.

U=UU=4111+1+01+0+1=2delimited-∣∣𝑈𝑈𝑈4111101012\mid U\mid=\sqrt{UU}=\sqrt{4-1-1-1+1+0-1+0+1}=\sqrt{2}∣ italic_U ∣ = square-root start_ARG italic_U italic_U end_ARG = square-root start_ARG 4 - 1 - 1 - 1 + 1 + 0 - 1 + 0 + 1 end_ARG = square-root start_ARG 2 end_ARG

Moreover, for each vertex j𝑗jitalic_j in Vεsubscript𝑉𝜀V_{\varepsilon}italic_V start_POSTSUBSCRIPT italic_ε end_POSTSUBSCRIPT, we have

vovc+vovjvcvj=1c{a,b},jVεformulae-sequencesuperscriptsubscript𝑣𝑜superscriptsubscript𝑣𝑐superscriptsubscript𝑣𝑜superscriptsubscript𝑣𝑗superscriptsubscript𝑣𝑐superscriptsubscript𝑣𝑗1formulae-sequence𝑐𝑎𝑏𝑗subscript𝑉𝜀v_{o}^{*}v_{c}^{*}+v_{o}^{*}v_{j}^{*}-v_{c}^{*}v_{j}^{*}=1\ \ \ c\in\{a,b\},\ %\ j\in V_{\varepsilon}italic_v start_POSTSUBSCRIPT italic_o end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_v start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT + italic_v start_POSTSUBSCRIPT italic_o end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_v start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT - italic_v start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_v start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT = 1 italic_c ∈ { italic_a , italic_b } , italic_j ∈ italic_V start_POSTSUBSCRIPT italic_ε end_POSTSUBSCRIPT

Therefore, we obtain

vcvj=0.5+vovjc{a,b},jVεformulae-sequencesuperscriptsubscript𝑣𝑐superscriptsubscript𝑣𝑗0.5superscriptsubscript𝑣𝑜superscriptsubscript𝑣𝑗formulae-sequence𝑐𝑎𝑏𝑗subscript𝑉𝜀v_{c}^{*}v_{j}^{*}=-0.5+v_{o}^{*}v_{j}^{*}\ \ \ c\in\{a,b\},\ \ j\in V_{\varepsilon}italic_v start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_v start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT = - 0.5 + italic_v start_POSTSUBSCRIPT italic_o end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_v start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_c ∈ { italic_a , italic_b } , italic_j ∈ italic_V start_POSTSUBSCRIPT italic_ε end_POSTSUBSCRIPT

which concludes that Uvj=2vovjvavjvbvj=2vovj+0.5vovj+0.5vovj=1𝑈superscriptsubscript𝑣𝑗2superscriptsubscript𝑣𝑜superscriptsubscript𝑣𝑗superscriptsubscript𝑣𝑎superscriptsubscript𝑣𝑗superscriptsubscript𝑣𝑏superscriptsubscript𝑣𝑗2superscriptsubscript𝑣𝑜superscriptsubscript𝑣𝑗0.5superscriptsubscript𝑣𝑜superscriptsubscript𝑣𝑗0.5superscriptsubscript𝑣𝑜superscriptsubscript𝑣𝑗1Uv_{j}^{*}=2v_{o}^{*}v_{j}^{*}-v_{a}^{*}v_{j}^{*}-v_{b}^{*}v_{j}^{*}=2v_{o}^{*%}v_{j}^{*}+0.5-v_{o}^{*}v_{j}^{*}+0.5-v_{o}^{*}v_{j}^{*}=1italic_U italic_v start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT = 2 italic_v start_POSTSUBSCRIPT italic_o end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_v start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT - italic_v start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_v start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT - italic_v start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_v start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT = 2 italic_v start_POSTSUBSCRIPT italic_o end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_v start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT + 0.5 - italic_v start_POSTSUBSCRIPT italic_o end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_v start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT + 0.5 - italic_v start_POSTSUBSCRIPT italic_o end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_v start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT = 1, and the angle between two vectors U𝑈Uitalic_U and vjsubscript𝑣𝑗v_{j}italic_v start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT is 45454545 degrees for jVε𝑗limit-fromsubscript𝑉𝜀j\in V_{\varepsilon}\ \diamonditalic_j ∈ italic_V start_POSTSUBSCRIPT italic_ε end_POSTSUBSCRIPT ⋄

Now we can prove our main result.

Theorem 8. By solving the SDP model (5) on G2𝐺2G2italic_G 2, it is impossible to have an optimal solution that meets the Property (1)on G𝐺Gitalic_G, unless the induced graph on Vεsubscript𝑉𝜀V_{\varepsilon}italic_V start_POSTSUBSCRIPT italic_ε end_POSTSUBSCRIPT is bipartite.
Proof. Suppose that the optimal solution of the SDP model (5) meets the Property (1) on G𝐺Gitalic_G.Therefore, for each edge ij𝑖𝑗ijitalic_i italic_j in Eεsubscript𝐸𝜀E_{\varepsilon}italic_E start_POSTSUBSCRIPT italic_ε end_POSTSUBSCRIPT we have four normalized vectors vi,vj,va,vbsuperscriptsubscript𝑣𝑖superscriptsubscript𝑣𝑗superscriptsubscript𝑣𝑎superscriptsubscript𝑣𝑏v_{i}^{*},v_{j}^{*},v_{a}^{*},v_{b}^{*}italic_v start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT , italic_v start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT , italic_v start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT , italic_v start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT which are almost perpendicular to each other,and a normalized vector vosuperscriptsubscript𝑣𝑜v_{o}^{*}italic_v start_POSTSUBSCRIPT italic_o end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT with 0.5vovc0.5+ε0.5superscriptsubscript𝑣𝑜subscript𝑣𝑐0.5𝜀0.5\leq v_{o}^{*}v_{c}\leq 0.5+\varepsilon0.5 ≤ italic_v start_POSTSUBSCRIPT italic_o end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_v start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT ≤ 0.5 + italic_ε (c=i,j,a,b)𝑐𝑖𝑗𝑎𝑏(c=i,j,a,b)( italic_c = italic_i , italic_j , italic_a , italic_b ) which is almost equal to 0.5(vi+vj+va+vb)0.5superscriptsubscript𝑣𝑖superscriptsubscript𝑣𝑗superscriptsubscript𝑣𝑎superscriptsubscript𝑣𝑏0.5(v_{i}^{*}+v_{j}^{*}+v_{a}^{*}+v_{b}^{*})0.5 ( italic_v start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT + italic_v start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT + italic_v start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT + italic_v start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ). In other words, there exists a vector ri,jsubscript𝑟𝑖𝑗r_{i,j}italic_r start_POSTSUBSCRIPT italic_i , italic_j end_POSTSUBSCRIPT with vi+vj+ri,j=Usuperscriptsubscript𝑣𝑖superscriptsubscript𝑣𝑗subscript𝑟𝑖𝑗𝑈v_{i}^{*}+v_{j}^{*}+r_{i,j}=Uitalic_v start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT + italic_v start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT + italic_r start_POSTSUBSCRIPT italic_i , italic_j end_POSTSUBSCRIPT = italic_U, where εvi+vjUε,ri,jεformulae-sequence𝜀delimited-∣∣superscriptsubscript𝑣𝑖superscriptsubscript𝑣𝑗delimited-∣∣𝑈𝜀delimited-∣∣subscript𝑟𝑖𝑗𝜀-\varepsilon\leq\mid v_{i}^{*}+v_{j}^{*}\mid-\mid U\mid\leq\varepsilon,\ \mid r%_{i,j}\mid\leq\varepsilon- italic_ε ≤ ∣ italic_v start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT + italic_v start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ∣ - ∣ italic_U ∣ ≤ italic_ε , ∣ italic_r start_POSTSUBSCRIPT italic_i , italic_j end_POSTSUBSCRIPT ∣ ≤ italic_ε, and cos(U,vi+vj)1ε𝑐𝑜𝑠𝑈superscriptsubscript𝑣𝑖superscriptsubscript𝑣𝑗1𝜀cos(U,v_{i}^{*}+v_{j}^{*})\geq 1-\varepsilonitalic_c italic_o italic_s ( italic_U , italic_v start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT + italic_v start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ) ≥ 1 - italic_ε.

Now, suppose that we have an odd cycle on 2t+12𝑡12t+12 italic_t + 1 vertices in Gε=(Vε,Eε)subscript𝐺𝜀subscript𝑉𝜀subscript𝐸𝜀G_{\varepsilon}=(V_{\varepsilon},E_{\varepsilon})italic_G start_POSTSUBSCRIPT italic_ε end_POSTSUBSCRIPT = ( italic_V start_POSTSUBSCRIPT italic_ε end_POSTSUBSCRIPT , italic_E start_POSTSUBSCRIPT italic_ε end_POSTSUBSCRIPT ). By addition of the vectors in this cycle and introducing W=(v1+v2)+(v2+v3)++𝑊subscript𝑣1subscript𝑣2subscript𝑣2subscript𝑣3limit-fromW=(v_{1}+v_{2})+(v_{2}+v_{3})+...+italic_W = ( italic_v start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT + italic_v start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) + ( italic_v start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT + italic_v start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ) + … +(v2t+v2t+1)+(v2t+1+v1)subscript𝑣2𝑡subscript𝑣2𝑡1subscript𝑣2𝑡1subscript𝑣1(v_{2t}+v_{2t+1})+(v_{2t+1}+v_{1})( italic_v start_POSTSUBSCRIPT 2 italic_t end_POSTSUBSCRIPT + italic_v start_POSTSUBSCRIPT 2 italic_t + 1 end_POSTSUBSCRIPT ) + ( italic_v start_POSTSUBSCRIPT 2 italic_t + 1 end_POSTSUBSCRIPT + italic_v start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ), we have

U.W= 2(2t+1)=UWcos(U,W)formulae-sequence𝑈𝑊22𝑡1delimited-∣∣𝑈delimited-∣∣𝑊𝑐𝑜𝑠𝑈𝑊U.W=\ 2(2t+1)=\mid U\mid\mid W\mid cos(U,W)italic_U . italic_W = 2 ( 2 italic_t + 1 ) = ∣ italic_U ∣ ∣ italic_W ∣ italic_c italic_o italic_s ( italic_U , italic_W )

By introducing W=v1+v2+v3+v4++v2t1+v2t+v2t+1= 0.5Wsuperscript𝑊subscript𝑣1subscript𝑣2subscript𝑣3subscript𝑣4subscript𝑣2𝑡1subscript𝑣2𝑡subscript𝑣2𝑡10.5𝑊W^{\prime}=v_{1}+v_{2}+v_{3}+v_{4}+...+v_{2t-1}+v_{2t}+v_{2t+1}=\ 0.5Witalic_W start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT = italic_v start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT + italic_v start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT + italic_v start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT + italic_v start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT + … + italic_v start_POSTSUBSCRIPT 2 italic_t - 1 end_POSTSUBSCRIPT + italic_v start_POSTSUBSCRIPT 2 italic_t end_POSTSUBSCRIPT + italic_v start_POSTSUBSCRIPT 2 italic_t + 1 end_POSTSUBSCRIPT = 0.5 italic_W, the above summation can be written as follows,

U.W=2U.W=2UWcos(U,W)= 2(2t+1)formulae-sequence𝑈𝑊2𝑈superscript𝑊2delimited-∣∣𝑈delimited-∣∣superscript𝑊𝑐𝑜𝑠𝑈superscript𝑊22𝑡1U.W=2U.W^{\prime}=2\mid U\mid\mid W^{\prime}\mid cos(U,W^{\prime})=\ 2(2t+1)italic_U . italic_W = 2 italic_U . italic_W start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT = 2 ∣ italic_U ∣ ∣ italic_W start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ∣ italic_c italic_o italic_s ( italic_U , italic_W start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) = 2 ( 2 italic_t + 1 )

Where

(t+0.5)21W=(t+0.5)2cos(U,W)𝑡0.521delimited-∣∣superscript𝑊𝑡0.52𝑐𝑜𝑠𝑈superscript𝑊\frac{(t+0.5)\sqrt{2}}{1}\leq\mid W^{\prime}\mid=\frac{(t+0.5)\sqrt{2}}{cos(U,%W^{\prime})}divide start_ARG ( italic_t + 0.5 ) square-root start_ARG 2 end_ARG end_ARG start_ARG 1 end_ARG ≤ ∣ italic_W start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ∣ = divide start_ARG ( italic_t + 0.5 ) square-root start_ARG 2 end_ARG end_ARG start_ARG italic_c italic_o italic_s ( italic_U , italic_W start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) end_ARG

By introducing Wi=Wvisubscript𝑊𝑖superscript𝑊subscript𝑣𝑖W_{i}=W^{\prime}-v_{i}italic_W start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT = italic_W start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT - italic_v start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT, for i=1,,2t+1𝑖12𝑡1i=1,...,2t+1italic_i = 1 , … , 2 italic_t + 1, we have

U.Wi= 2t=UWicos(U,Wi)formulae-sequence𝑈subscript𝑊𝑖2𝑡delimited-∣∣𝑈delimited-∣∣subscript𝑊𝑖𝑐𝑜𝑠𝑈subscript𝑊𝑖U.W_{i}=\ 2t=\mid U\mid\mid W_{i}\mid cos(U,W_{i})italic_U . italic_W start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT = 2 italic_t = ∣ italic_U ∣ ∣ italic_W start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ∣ italic_c italic_o italic_s ( italic_U , italic_W start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT )

Where

t21Wi=t2cos(U,Wi)𝑡21delimited-∣∣subscript𝑊𝑖𝑡2𝑐𝑜𝑠𝑈subscript𝑊𝑖\frac{t\sqrt{2}}{1}\leq\mid W_{i}\mid=\frac{t\sqrt{2}}{cos(U,W_{i})}divide start_ARG italic_t square-root start_ARG 2 end_ARG end_ARG start_ARG 1 end_ARG ≤ ∣ italic_W start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ∣ = divide start_ARG italic_t square-root start_ARG 2 end_ARG end_ARG start_ARG italic_c italic_o italic_s ( italic_U , italic_W start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) end_ARG

By addition of the Wisubscript𝑊𝑖W_{i}italic_W start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT vectors in this cycle, we have

i=12t+1Wi=(2t+1)Wi=12t+1vi=2tW=2t(t+0.5)2cos(U,W)=t(2t+1)2cos(U,W)delimited-∣∣superscriptsubscript𝑖12𝑡1subscript𝑊𝑖delimited-∣∣2𝑡1superscript𝑊superscriptsubscript𝑖12𝑡1subscript𝑣𝑖delimited-∣∣2𝑡superscript𝑊2𝑡𝑡0.52𝑐𝑜𝑠𝑈superscript𝑊𝑡2𝑡12𝑐𝑜𝑠𝑈superscript𝑊\mid\sum_{i=1}^{2t+1}W_{i}\mid=\mid(2t+1)W^{\prime}-\sum_{i=1}^{2t+1}v_{i}\mid%=\mid 2tW^{\prime}\mid=\frac{2t(t+0.5)\sqrt{2}}{cos(U,W^{\prime})}=\frac{t(2t+%1)\sqrt{2}}{cos(U,W^{\prime})}∣ ∑ start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 italic_t + 1 end_POSTSUPERSCRIPT italic_W start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ∣ = ∣ ( 2 italic_t + 1 ) italic_W start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT - ∑ start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 italic_t + 1 end_POSTSUPERSCRIPT italic_v start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ∣ = ∣ 2 italic_t italic_W start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ∣ = divide start_ARG 2 italic_t ( italic_t + 0.5 ) square-root start_ARG 2 end_ARG end_ARG start_ARG italic_c italic_o italic_s ( italic_U , italic_W start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) end_ARG = divide start_ARG italic_t ( 2 italic_t + 1 ) square-root start_ARG 2 end_ARG end_ARG start_ARG italic_c italic_o italic_s ( italic_U , italic_W start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) end_ARG

Moreover, we have

i=12t+1Wii=12t+1Wi(2t+1)t2min{cos(U,Wi):i=1,,2t+1}delimited-∣∣superscriptsubscript𝑖12𝑡1subscript𝑊𝑖superscriptsubscript𝑖12𝑡1delimited-∣∣subscript𝑊𝑖2𝑡1𝑡2𝑚𝑖𝑛conditional-set𝑐𝑜𝑠𝑈subscript𝑊𝑖𝑖12𝑡1\mid\sum_{i=1}^{2t+1}W_{i}\mid\leq\sum_{i=1}^{2t+1}\mid W_{i}\mid\leq\frac{(2t%+1)t\sqrt{2}}{min\{cos(U,W_{i}):\ i=1,\dots,2t+1\}}∣ ∑ start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 italic_t + 1 end_POSTSUPERSCRIPT italic_W start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ∣ ≤ ∑ start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 italic_t + 1 end_POSTSUPERSCRIPT ∣ italic_W start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ∣ ≤ divide start_ARG ( 2 italic_t + 1 ) italic_t square-root start_ARG 2 end_ARG end_ARG start_ARG italic_m italic_i italic_n { italic_c italic_o italic_s ( italic_U , italic_W start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) : italic_i = 1 , … , 2 italic_t + 1 } end_ARG

Therefore

j:cos(U,Wj)cos(U,W),θ(U,Wj)θ(U,W):𝑗formulae-sequence𝑐𝑜𝑠𝑈subscript𝑊𝑗𝑐𝑜𝑠𝑈superscript𝑊𝜃𝑈subscript𝑊𝑗𝜃𝑈superscript𝑊\exists j:\ cos(U,W_{j})\leq cos(U,W^{\prime}),\ \ \ \theta(U,W_{j})\geq\theta%(U,W^{\prime})∃ italic_j : italic_c italic_o italic_s ( italic_U , italic_W start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ) ≤ italic_c italic_o italic_s ( italic_U , italic_W start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) , italic_θ ( italic_U , italic_W start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ) ≥ italic_θ ( italic_U , italic_W start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT )

Hence, there are 2t+12𝑡12t+12 italic_t + 1 normalized vectors vj+1,,v2t+1,v1,,vjsubscript𝑣𝑗1subscript𝑣2𝑡1subscript𝑣1subscript𝑣𝑗v_{j+1},\dots,v_{2t+1},v_{1},\dots,v_{j}italic_v start_POSTSUBSCRIPT italic_j + 1 end_POSTSUBSCRIPT , … , italic_v start_POSTSUBSCRIPT 2 italic_t + 1 end_POSTSUBSCRIPT , italic_v start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_v start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT, which satisfy the conditions of the Theorem (6), but we have θ(U,vj+1++v2t+1+v1++vj1)θ(U,vj+1++v2t+1+v1++vj1+vj)𝜃𝑈subscript𝑣𝑗1subscript𝑣2𝑡1subscript𝑣1subscript𝑣𝑗1𝜃𝑈subscript𝑣𝑗1subscript𝑣2𝑡1subscript𝑣1subscript𝑣𝑗1subscript𝑣𝑗\theta(U,v_{j+1}+\dots+v_{2t+1}+v_{1}+\dots+v_{j-1})\ \geq\theta(U,v_{j+1}+%\dots+v_{2t+1}+v_{1}+\dots+v_{j-1}+v_{j})italic_θ ( italic_U , italic_v start_POSTSUBSCRIPT italic_j + 1 end_POSTSUBSCRIPT + ⋯ + italic_v start_POSTSUBSCRIPT 2 italic_t + 1 end_POSTSUBSCRIPT + italic_v start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT + ⋯ + italic_v start_POSTSUBSCRIPT italic_j - 1 end_POSTSUBSCRIPT ) ≥ italic_θ ( italic_U , italic_v start_POSTSUBSCRIPT italic_j + 1 end_POSTSUBSCRIPT + ⋯ + italic_v start_POSTSUBSCRIPT 2 italic_t + 1 end_POSTSUBSCRIPT + italic_v start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT + ⋯ + italic_v start_POSTSUBSCRIPT italic_j - 1 end_POSTSUBSCRIPT + italic_v start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ), which is a contradiction.

Therefore, there is not any odd cycle in Gεsubscript𝐺𝜀G_{\varepsilon}italic_G start_POSTSUBSCRIPT italic_ε end_POSTSUBSCRIPT, and, if the optimal solution of the SDP model (6) on G2𝐺2G2italic_G 2 meets the Property (1) on G𝐺Gitalic_G, then the subgraph Gεsubscript𝐺𝜀G_{\varepsilon}italic_G start_POSTSUBSCRIPT italic_ε end_POSTSUBSCRIPT is bipartite \ \diamond

proposition 2. To produce a performance ratio of 1.999999 for problems with zVCPn2superscriptsubscript𝑧𝑉𝐶𝑃𝑛2z_{VCP}^{*}\geq\frac{n}{2}italic_z start_POSTSUBSCRIPT italic_V italic_C italic_P end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ≥ divide start_ARG italic_n end_ARG start_ARG 2 end_ARG,we should solve the SDP model (5) on G2𝐺2G2italic_G 2. Then, if the solution does not meet the Property (1),we have a performance ratio of 1.999999. Otherwise, we can solve the VCP problem on the bipartite graph Gεsubscript𝐺𝜀G_{\varepsilon}italic_G start_POSTSUBSCRIPT italic_ε end_POSTSUBSCRIPT,where Vε0.989999ndelimited-∣∣subscript𝑉𝜀0.989999𝑛\mid V_{\varepsilon}\mid\geq 0.989999n∣ italic_V start_POSTSUBSCRIPT italic_ε end_POSTSUBSCRIPT ∣ ≥ 0.989999 italic_n, to produce a performance ratio of 1.999999.

Moreover, based on the Theorem (1) and the proposition (2), to produce a performance ratio of 1.999999 for problems with zVCP<n2superscriptsubscript𝑧𝑉𝐶𝑃𝑛2z_{VCP}^{*}<\frac{n}{2}italic_z start_POSTSUBSCRIPT italic_V italic_C italic_P end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT < divide start_ARG italic_n end_ARG start_ARG 2 end_ARG, it is sufficient to produce an extreme optimal solution for the LP relaxation of the model (1), to introduce G2𝐺2G2italic_G 2 based on G0.5subscript𝐺0.5G_{0.5}italic_G start_POSTSUBSCRIPT 0.5 end_POSTSUBSCRIPT.

Theorem 9. The Optimal solution of the following LP model corresponds to an extreme optimal solution of the LP relaxation of the model (1).

(6)mins.t.z6=i=1n(0.1)ixi6𝑚𝑖subscript𝑛formulae-sequence𝑠𝑡𝑧6superscriptsubscript𝑖1𝑛superscript0.1𝑖subscript𝑥𝑖(6)\ min_{s.t.}z6=\sum_{i=1}^{n}(0.1)^{i}x_{i}( 6 ) italic_m italic_i italic_n start_POSTSUBSCRIPT italic_s . italic_t . end_POSTSUBSCRIPT italic_z 6 = ∑ start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT ( 0.1 ) start_POSTSUPERSCRIPT italic_i end_POSTSUPERSCRIPT italic_x start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT
xi+xj1ijEformulae-sequencesubscript𝑥𝑖subscript𝑥𝑗1𝑖𝑗𝐸x_{i}+x_{j}\geq 1\ \ \ ij\in Eitalic_x start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT + italic_x start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ≥ 1 italic_i italic_j ∈ italic_E
iVxi=zLPrelaxationofthemodel(1)subscript𝑖𝑉subscript𝑥𝑖subscriptsuperscript𝑧𝐿𝑃𝑟𝑒𝑙𝑎𝑥𝑎𝑡𝑖𝑜𝑛𝑜𝑓𝑡𝑒𝑚𝑜𝑑𝑒𝑙1\sum_{i\in V}x_{i}=z^{*}_{LP\ relaxation\ of\ the\ model\ (1)}∑ start_POSTSUBSCRIPT italic_i ∈ italic_V end_POSTSUBSCRIPT italic_x start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT = italic_z start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_L italic_P italic_r italic_e italic_l italic_a italic_x italic_a italic_t italic_i italic_o italic_n italic_o italic_f italic_t italic_h italic_e italic_m italic_o italic_d italic_e italic_l ( 1 ) end_POSTSUBSCRIPT
0xi+1iVformulae-sequence0subscript𝑥𝑖1𝑖𝑉0\leq x_{i}\leq+1\ \ \ i\in V0 ≤ italic_x start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ≤ + 1 italic_i ∈ italic_V

Proof. The feasible region of the model (6) is an optimal face of the feasible region of the LP relaxation of the model (1), andbased on the priority weights of the decision variables,its optimal solution corresponds to the solution of the following algorithm.
Step 0. Let k=1 and zsuperscript𝑧z^{*}italic_z start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT be the optimal value of the LP relaxation of the model (1).
Step k. Solve the following LP model.

(7)mins.t.z(k)=xk7𝑚𝑖subscript𝑛formulae-sequence𝑠𝑡𝑧𝑘subscript𝑥𝑘(7)\ min_{s.t.}z(k)=x_{k}( 7 ) italic_m italic_i italic_n start_POSTSUBSCRIPT italic_s . italic_t . end_POSTSUBSCRIPT italic_z ( italic_k ) = italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT
xi+xj1ijEformulae-sequencesubscript𝑥𝑖subscript𝑥𝑗1𝑖𝑗𝐸x_{i}+x_{j}\geq 1\ \ \ ij\in Eitalic_x start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT + italic_x start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ≥ 1 italic_i italic_j ∈ italic_E
iVxi=zsubscript𝑖𝑉subscript𝑥𝑖superscript𝑧\sum_{i\in V}x_{i}=z^{*}∑ start_POSTSUBSCRIPT italic_i ∈ italic_V end_POSTSUBSCRIPT italic_x start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT = italic_z start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT
xi=xi=z(k)i=1,,k1formulae-sequencesubscript𝑥𝑖superscriptsubscript𝑥𝑖𝑧superscript𝑘𝑖1𝑘1x_{i}=x_{i}^{*}=z(k)^{*}\ \ \ i=1,\cdots,k-1italic_x start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT = italic_x start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT = italic_z ( italic_k ) start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_i = 1 , ⋯ , italic_k - 1
0xi+1iVformulae-sequence0subscript𝑥𝑖1𝑖𝑉0\leq x_{i}\leq+1\ \ \ i\in V0 ≤ italic_x start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ≤ + 1 italic_i ∈ italic_V

Let k=k+1. If k<n𝑘𝑛k<nitalic_k < italic_n repeat this step, otherwise, the solution xsuperscript𝑥x^{*}italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT is an extreme optimal solution of the LP relaxation of the model (1)\ \diamond

Therefore, our algorithm to produce an approximation ratio of 1.999999, for arbitrary vertex cover problems, is as follows:

Mahdis Algorithm (To produce a vertex cover solution on graph G with a ratio factor ρ=1.999999𝜌1.999999\rho=1.999999italic_ρ = 1.999999)
Step 1. Let V1=V0={}superscript𝑉1superscript𝑉0V^{1}=V^{0}=\{\}italic_V start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT = italic_V start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT = { } and solve the LP relaxation of the model (1) on G𝐺Gitalic_G.
Step 2. If zLPrelaxationofthemodel(1)<n2subscriptsuperscript𝑧𝐿𝑃𝑟𝑒𝑙𝑎𝑥𝑎𝑡𝑖𝑜𝑛𝑜𝑓𝑡𝑒𝑚𝑜𝑑𝑒𝑙1𝑛2z^{*}_{LP\ relaxation\ of\ the\ model\ (1)}<\frac{n}{2}italic_z start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_L italic_P italic_r italic_e italic_l italic_a italic_x italic_a italic_t italic_i italic_o italic_n italic_o italic_f italic_t italic_h italic_e italic_m italic_o italic_d italic_e italic_l ( 1 ) end_POSTSUBSCRIPT < divide start_ARG italic_n end_ARG start_ARG 2 end_ARG, then solve the model (6)to produce an extreme optimal solution of the LP relaxation of the model (1), and based on the solution (xj{0,0.5,1}jVformulae-sequencesuperscriptsubscript𝑥𝑗00.51𝑗𝑉x_{j}^{*}\in\{0,0.5,1\}\ \ j\in Vitalic_x start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ∈ { 0 , 0.5 , 1 } italic_j ∈ italic_V),introduce V0={jVxj=0}superscript𝑉0conditional-set𝑗𝑉superscriptsubscript𝑥𝑗0V^{0}=\{j\in V\mid x_{j}^{*}=0\}italic_V start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT = { italic_j ∈ italic_V ∣ italic_x start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT = 0 }, V0.5={jVxj=0.5}superscript𝑉0.5conditional-set𝑗𝑉superscriptsubscript𝑥𝑗0.5V^{0.5}=\{j\in V\mid x_{j}^{*}=0.5\}italic_V start_POSTSUPERSCRIPT 0.5 end_POSTSUPERSCRIPT = { italic_j ∈ italic_V ∣ italic_x start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT = 0.5 }, V1={jVxj=1}superscript𝑉1conditional-set𝑗𝑉superscriptsubscript𝑥𝑗1V^{1}=\{j\in V\mid x_{j}^{*}=1\}italic_V start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT = { italic_j ∈ italic_V ∣ italic_x start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT = 1 }, and let G=G0.5𝐺subscript𝐺0.5G=G_{0.5}italic_G = italic_G start_POSTSUBSCRIPT 0.5 end_POSTSUBSCRIPT as the induced graph on the vertex set V0.5superscript𝑉0.5V^{0.5}italic_V start_POSTSUPERSCRIPT 0.5 end_POSTSUPERSCRIPT.
Step 3. Produce G2𝐺2G2italic_G 2 based on G𝐺Gitalic_G and solve the SDP (5) model.
Step 4. If {jVvovj<0.5}>0.000001ndelimited-∣∣conditional-set𝑗𝑉superscriptsubscript𝑣𝑜superscriptsubscript𝑣𝑗0.50.000001𝑛\mid\{j\in V\mid v_{o}^{*}v_{j}^{*}<0.5\}\mid>0.000001n∣ { italic_j ∈ italic_V ∣ italic_v start_POSTSUBSCRIPT italic_o end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_v start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT < 0.5 } ∣ > 0.000001 italic_n, then produce a suitable solution V1V0subscript𝑉1subscript𝑉0V_{1}\cup V_{0}italic_V start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ∪ italic_V start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT,correspondingly, where V0={jVvovj<0.5}subscript𝑉0conditional-set𝑗𝑉superscriptsubscript𝑣𝑜superscriptsubscript𝑣𝑗0.5V_{0}=\{j\in V\mid v_{o}^{*}v_{j}^{*}<0.5\}italic_V start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = { italic_j ∈ italic_V ∣ italic_v start_POSTSUBSCRIPT italic_o end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_v start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT < 0.5 } and V1=VV0subscript𝑉1𝑉subscript𝑉0V_{1}=V-V_{0}italic_V start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT = italic_V - italic_V start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT and go to Step 7.Hence, the solution does not meet the Property (1.a) and we have V1z(G)1.999999delimited-∣∣subscript𝑉1superscript𝑧𝐺1.999999\frac{\mid V_{1}\mid}{z^{*}(G)}\leq 1.999999divide start_ARG ∣ italic_V start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ∣ end_ARG start_ARG italic_z start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_G ) end_ARG ≤ 1.999999. Otherwise, go to Step 5.
Step 5. If {jVvovj>0.5004}>0.01ndelimited-∣∣conditional-set𝑗𝑉superscriptsubscript𝑣𝑜superscriptsubscript𝑣𝑗0.50040.01𝑛\mid\{j\in V\mid v_{o}^{*}v_{j}^{*}>0.5004\}\mid>0.01n∣ { italic_j ∈ italic_V ∣ italic_v start_POSTSUBSCRIPT italic_o end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_v start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT > 0.5004 } ∣ > 0.01 italic_n, then it is sufficient to produce an arbitraryVCP feasible solution V=V1V0𝑉subscript𝑉1subscript𝑉0V=V_{1}\cup V_{0}italic_V = italic_V start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ∪ italic_V start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT to have V1z(G)1.999999delimited-∣∣subscript𝑉1superscript𝑧𝐺1.999999\frac{\mid V_{1}\mid}{z^{*}(G)}\leq 1.999999divide start_ARG ∣ italic_V start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ∣ end_ARG start_ARG italic_z start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_G ) end_ARG ≤ 1.999999 and go to Step 7. Otherwise, go to Step 6.
Step 6. The solution meets the Property (1) and based on the Theorem (7), graph Gεsubscript𝐺𝜀G_{\varepsilon}italic_G start_POSTSUBSCRIPT italic_ε end_POSTSUBSCRIPT is bipartite,and Vε0.989999ndelimited-∣∣subscript𝑉𝜀0.989999𝑛\mid V_{\varepsilon}\mid\geq 0.989999n∣ italic_V start_POSTSUBSCRIPT italic_ε end_POSTSUBSCRIPT ∣ ≥ 0.989999 italic_n. Therefore, solve the VCP problem on bipartite subgraph Gεsubscript𝐺𝜀G_{\varepsilon}italic_G start_POSTSUBSCRIPT italic_ε end_POSTSUBSCRIPT and add all vertices of VVε𝑉subscript𝑉𝜀V-V_{\varepsilon}italic_V - italic_V start_POSTSUBSCRIPT italic_ε end_POSTSUBSCRIPT to the solution (That is V1=V1(VVε)subscript𝑉1subscript𝑉1𝑉subscript𝑉𝜀V_{1}=V_{1}\cup(V-V_{\varepsilon})italic_V start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT = italic_V start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ∪ ( italic_V - italic_V start_POSTSUBSCRIPT italic_ε end_POSTSUBSCRIPT )),to produce a feasible solution V1V0subscript𝑉1subscript𝑉0V_{1}\cup V_{0}italic_V start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ∪ italic_V start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT for which we have V1z(G)1.999999delimited-∣∣subscript𝑉1superscript𝑧𝐺1.999999\frac{\mid V_{1}\mid}{z^{*}(G)}\leq 1.999999divide start_ARG ∣ italic_V start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ∣ end_ARG start_ARG italic_z start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_G ) end_ARG ≤ 1.999999. Then, go to Step 7.
Step 7. The partitioning (V1V1)(V0V0)subscript𝑉1superscript𝑉1subscript𝑉0superscript𝑉0(V_{1}\cup V^{1})\cup(V_{0}\cup V^{0})( italic_V start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ∪ italic_V start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT ) ∪ ( italic_V start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ∪ italic_V start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT ) produces a VCP feasible solution on the original graph G𝐺Gitalic_G with an approximation ratio factor ρ=1.999999𝜌1.999999\rho=1.999999italic_ρ = 1.999999.

proposition 3. Based on the proposed 1.999999-approximation algorithm for the vertex cover problem, the unique games conjecture is not true.

4 Conclusions

One of the open problems about the vertex cover problem is the possibility of introducing an approximation algorithm within any constant factor better than 2. Here, we proposed a new algorithm to produce a 1.999999-approximation ratio for the vertex cover problem on arbitrary graphs, and this led to the conclusion that the unique games conjecture is not true.

Acknowledgment. I would like to sincerely thank Dr. Flavia Bonomo for her useful comments and her endorsement for publishing in arXiv.

Competing Interest and Data Availability
The authors have no relevant financial or non-financial interests to declare relevant to this article’s content. Data sharing does not apply to this article as no data sets were generated or analyzed during the current study.

References
1) Dinur I., Safra S. (2005) On the hardness of approximating minimum vertex cover. Annals of Mathematics, 162, 439-485.
2) Khot S. (2002) On the power of unique 2-Prover 1-Round games. Proceeding of 34th ACM Symposium on Theory of Computing, STOC.
3) Khot S., Regev O. (2008) Vertex cover might be hard to approximate to within 2ε2𝜀2-\varepsilon2 - italic_ε. Journal of Computer and System Sciences, 74, 335-349.
4) Nemhauser G.L., Trotter L.E. (1975) Vertex packing: Structural properties and algorithms. Mathematical Programming, 8, 232-248.

A (1.999999)-approximation ratio for vertex cover problem (2025)

References

Top Articles
Latest Posts
Recommended Articles
Article information

Author: Chrissy Homenick

Last Updated:

Views: 6050

Rating: 4.3 / 5 (74 voted)

Reviews: 81% of readers found this page helpful

Author information

Name: Chrissy Homenick

Birthday: 2001-10-22

Address: 611 Kuhn Oval, Feltonbury, NY 02783-3818

Phone: +96619177651654

Job: Mining Representative

Hobby: amateur radio, Sculling, Knife making, Gardening, Watching movies, Gunsmithing, Video gaming

Introduction: My name is Chrissy Homenick, I am a tender, funny, determined, tender, glorious, fancy, enthusiastic person who loves writing and wants to share my knowledge and understanding with you.